
CMake && Friends

Open source tools to build, test and
package software

CMake, CTest, CPack, CDash

1

CMake && Friends

Open source tools to build, test and
package software

CMake, CTest, CPack, CDash

2

Preface
ANL has CMake on Theta and Cooley

CMake can be acquired from numerous locations for your local
machine

https://www.cmake.org/download/
From your Linux distribution

Visual Studio 2017+

apt.kitware.com for Debian and Ubuntu
Snap universal linux package

pip install cmake
homebrew

3

https://www.cmake.org/download/

Preface

You will need to install the exercises

Download at:

<ANL> resource

4

5

Technical computing
Algorithms & applications
Software process & infrastructure
Support & training
Open source leadership

Collaborative software R&D
SOFTWARE
PROCESS

6

Successful small business
Founded in 1998; privately owned; no debt

170 employees; 1/3 masters, 1/3 PhD

$31M revenue in 2018

Awards
HPC Best visualization product

Tibbetts award for outstanding research

6-Time Inc. 5000 Honoree

7

SOFTWARE
PROCESS

75+ Academic institutions
50+ Government agencies and labs
100+ Enterprises

Supporting all sectors

8

Open source platforms
• VTK & ParaView interactive visualization and

analysis for scientific data

• ITK & 3D Slicer medical image analysis and
personalized medicine research

• CMake cross-platform build system

– CDash, CTest, CPack, software process tools

• Resonant informatics and infovis

• KWIVER computer vision image and video
analysis

Simulation, ultrasound, physiology, information
security, materials science, …

9

Introduction to CMake

10

What is a Build System?

In the beginning there was the command line:

% gcc hello.cxx -o hello

What is a Build System?

Maybe use a shell script to avoid typing

buildhello.sh

#!/bin/sh

 gcc hello.cxx -o hello

% buildhello.sh

What is a Build System?

Even better use the make tool

Makefile

hello: hello.cxx

gcc hello.cxx

% make hello

// what about #include files?

What is a Build System?
Shell scripts
and command
lines and
simple
makefiles work
for a few files,
but not for lots
of files like VTK

What is a Build System?
A build system manages all of the source
files and the complicated
interdependencies for a project and turns
them into hopefully useful programs and
libraries.

What is CMake?

• CMake is the cross-platform, open-source build system that lets you use
the native development tools you love the most.

• It’s a build system generator

• It takes plain text files as input that describe your project and produces
project files or make files for use with a wide variety of native
development tools.

• Family of Software Development Tools
– Build = CMake Test = CTest/CDash Package = CPack

16

How CMake Changes The Way We Build C++

• Boost aims to give C++ a set of useful libraries like
Java, Python, and C#

• CMake aims to give C++ compile portability like the
compile once and run everywhere of Java, Python, and
C#
– Same build tool and files for all platforms
– Easy to mix both large and small libraries

17

Where did CMake come from?

• Kitware was the lead engineering team for
the Insight Segmentation and Registration
Toolkit (ITK) http://www.itk.org

• Funded by National Library of Medicine
(NLM): part of the Visible Human Project
– Data CT/MR/Slice 1994/1995
– Code (ITK) 1999

Where did CMake come from?

http://www.itk.org

CMake: History
• Other available tools were insufficient: pcmaker (vtk3.2), autoconf,

Apache ANT, qmake (Qt), JAM

• CMake provides the combination of native build tool use and platform
introspection that none of the others provide.

• CMake Release-1-0 branch created in 2001

• CMake 2.8 released in November, 2009

• CMake 3.0 released June, 2014

• CMake 3.14 released March, 2019

• CMake 3.17 released March, 2020

20

CMake has high adoption
5 million CMake downloads
in 2019. 13809 downloads
per day, or a daily rate of
307.3GiB, and yearly over
10TiB

Jetbrains IDE- CMake is the most
popular build tool at 42%.

• Job openings requiring CMake experience, March, 2019 Indeed.com, 464 jobs,
at Tesla Motors, DCS Corp, Mindsource, Quanergy, ...LinkedIn.com, 486 jobs, at
Samsung, Johnson Controls, Apple, Uber, Toyota, Microsoft ...

Updated CMake Tutorial

A new series of guides provided with each CMake
release to help with learning and using CMake.

Fully-tested source code embedded in HTML docs

23

Outsource your build to the CMake
developers

24

Typical Project without CMake (curl)

$ ls
CHANGES RELEASE-NOTES curl-config.in missing
CMake acinclude.m4 curl-style.el mkinstalldirs
CMakeLists.txt aclocal.m4 depcomp notes
build docs notes~
COPYING buildconf include packages
CVS buildconf.bat install-sh reconf
ChangeLog compile lib sample.emacs
Makefile config.guess libcurl.pc.in src
Makefile.am config.sub ltmain.sh tests
Makefile.in configure m4 vc6curl.dsw
README configure.ac maketgz

$ ls src/
CMakeLists.txt Makefile.riscos curlsrc.dsp hugehelp.h version.h
CVS Makefile.vc6 curlsrc.dsw macos writeenv.c
Makefile.Watcom Makefile.vc8 curlutil.c main.c writeenv.h
Makefile.am config-amigaos.h curlutil.h makefile.amiga writeout.c
Makefile.b32 config-mac.h getpass.c makefile.dj writeout.h
Makefile.in config-riscos.h getpass.h mkhelp.pl
Makefile.inc config-win32.h homedir.c setup.h
Makefile.m32 config.h.in homedir.h urlglob.c
Makefile.netware curl.rc hugehelp.c urlglob.h

• A build system
that just works

• A build system
that is easy to use
cross platform

CMake: Bridging C++ gaps
• Open-source cross-platform build manager using native tools

– Visual Studio 6, 2003, 2005, 2008, 2010, 2012, 2013, 2015, 2017, 2019
– Borland make, Nmake, Unix make, MSYS make, MinGW make
– Ninja
– Xcode

• IDE Support
– Code::Blocks KDevelop
– CodeLite Kate
– CLion Sublime Text
– Eclipse Visual Studio Code
– Emacs and Vim syntax files can be found on the CMake Download page

25

CMake: Bridging C++ gaps
• Operating Systems:

– HPUX, IRIX, Linux, MacOS, Windows, QNX, SunOS, and others
• Allows for platform inspection

– Programs
– Libraries and Header files
– Packages
– Determine hardware specifics like byte order

• Compiler Language Level Support
– C, C++, ObjC, ObjC++, CSharp, CUDA, Fortran, Swift

26

CMake: Bridging C++ gaps

• Support for complex custom commands such as:
– Qt’s moc, VTK’s wrapping

• Static, shared, object, and module library support
– including versions .so support

• Single input format for all platforms

• Create configured .h files

27

• Automatic dependency generation (C, C++, CUDA,
Fortran)
– build a target in some directory, and everything this

target depends on will be up-to-date

• Automatic re-execution of cmake at build time if
any cmake input file has changed

• Parallel builds
• User defined build directory

CMake: Bridging C++ gaps

28

CMake: Bridging C++ gaps

• Color and progress output for make

• Graphviz output for visualizing dependency trees

• Full cross platform install() system

• Compute link depend information, and chaining of
dependent libraries

• make help, make foo.o, make foo.i, make foo.s

29

CMake: Bridging C++ gaps

• Advanced RPATH handling
– Support for chrpath, i.e. changing the RPATH without

need to actually link again

• Create OSX library frameworks and application
bundles

• Extensive test suite and nightly builds/test on
many platforms

• Supports cross compilation

30

Learning CMake

For help or more information see:

– Professional CMake by Craig Scott

– Discourse forum

• https://discourse.cmake.org

– Documentation
• https://www.cmake.org/cmake/help/latest/

– Tutorial
• https://cmake.org/cmake/help/latest/guide/tutorial/index.html

31

https://discourse.cmake.org/
https://www.cmake.org/cmake/help/latest/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html

Running CMake

• cmake-gui (the Qt gui)
• ccmake (the terminal cli)
• cmake (non-interactive command line)

32

CMake Workflow

33

Step 0 - Run CMake
Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

Run cmake --version from the command line
Run ccmake or cmake-gui

34

Basic CMake Syntax
The CMake language consists of:

Commands, Variables, and Comments

cmake_minimum_required(VERSION 3.8)

project(main)

require C++11 and don’t decay down to 98

set(CMAKE_CXX_STANDARD 11)

set(CMAKE_CXX_STANDARD_REQUIRED True)

add_subdirectory(MathFunctions)

add_executable(main main.cxx)

target_link_libraries(main MathFunctions)

35

Basic CMake Syntax: examples

Commands may span multiple lines, but the command
name and the opening parenthesis must be on the same
line

set(sources

 CellSet.cxx

 CellSetExplicit.cxx

 CellSetStructured.cxx

 CoordinateSystem.cxx

 Field.cxx

 ImplicitFunction.cxx

)

36

CMake Commands
• Commands are documented online and within cmake itself:

– https://cmake.org/cmake/help/latest/manual/cmake-commands
.7.html

• Commands may be uppercase or lowercase.

add_executable(main main.cxx)

ADD_EXECUTABLE(main main.cxx)

Prefer Lowercase
Historical note: commands used to be all uppercase, earning
CMake the affectionate nickname “SCREAMMake” Thankfully,
those days are over!

37

https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html
https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html

CMake Commands (Arguments)

• Command arguments are space separated
• Arguments are case sensitive

add_executable(main WIN32 main.cxx)

• Quoted arguments
– A quoted argument is always exactly one value.
– An unquoted argument splits on semicolons and

removes empty arguments.

38

CMake Variables
• Variable names are case sensitive

set(LEAF valueA)

set(leaf valueB)

Creates two distinct variables named “LEAF” and “leaf”
• Names can only contain alpha-numerics and underscores

– [A-Za-z0-9_]
• CMake uses many variables that begin with “CMAKE_” – avoid

this naming convention (and establish your own) for CMake
variables specific to your project

39

CMake Variables

CMake variables are strings
set(name myexe)

These two statements are equivalent to each other.

set(srcs src1.cxx src2.cxx src3.cxx)

set(srcs "src1.cxx;src2.cxx;src3.cxx")

40

CMake Variables

Special syntax for setting environment

use ENV and curly braces { }

set(ENV{PATH} <value>...)

41

CMake Variables

Variable dereferencing syntax: ${VAR}

Environment Variable dereferencing syntax: $ENV{VAR}

message(STATUS "CMAKE_SOURCE_DIR='${CMAKE_SOURCE_DIR}'")

set(my_dir "${CMAKE_CURRENT_SOURCE_DIR}/my_dir")

message(STATUS "my_dir='${my_dir}'")

set(my_path "$ENV{PATH}")

message(STATUS "my_path='${my_path}'")

42

CMake Variables

Escaping

• \ is the escape character used in CMake

• You can also use long brackets

set(classic_str "* here be \"dragons\" *")

set(long_brackets [=[* here be "dragons" *]=])

message(STATUS ${classic_str})

message(STATUS ${long_brackets})

Both of these print: * here be "dragons" *

43

Configuring Header Files

• Can put build parameters into a header file
instead of passing them on the command line

configure_file(

 ${PROJECT_SOURCE_DIR}/projectConfig.h.in

 ${PROJECT_BINARY_DIR}/projectConfig.h

)

44

Configuring Header Files

• #define VARIABLE @VARIABLE@

45

// C++ source file

#define VARIABLE @VARIABLE@

#ifdef VARIABLE

 // will be hit when the CMake variable doesn't exist

#endif

Configuring Header Files

• #cmakedefine VARIABLE

46

// C++ source file

#cmakedefine @VARIABLE@

#ifdef VARIABLE

 // will not-be hit when the CMake

 // variable doesn't exist

#endif

Requiring a CMake Version

• First line of the top level CMakeLists.txt should always
be cmake_minimum_required

• Allows projects to require a given version of CMake
• Allows CMake to be backwards compatible

cmake_minimum_required(VERSION 3.9)

project(Example LANGUAGES C CXX CUDA)

47

project() command
• Necessary for the top-level CMake. Should be set after the
cmake_minimum_required command

cmake_minimum_required(VERSION 3.9)

project(Example LANGUAGES C CXX CUDA)

• VERSION: sets the PROJECT_VERSION_MAJOR/MINOR/TWEAK
• DESCRIPTION: sets the PROJECT_DESCRIPTION variable
• LANGUAGES:

– C, CXX, FORTRAN, CSharp, CUDA, ASM
– Default is C and CXX if not defined

48

CMake Language Standards
• CMake offers a few different ways to specify

which version of a language should be used.

set(CMAKE_CXX_STANDARD 11)

set(CMAKE_CXX_STANDARD_REQUIRED TRUE)

[50%] Building CXX object main.cxx.o

/usr/bin/c++ -std=gnu++11 -o main.cxx.o -c main.cxx

• CMAKE_CXX_EXTENSIONS controls if
compiler specific extensions are enabled

49

CMake 3.8: meta-features
• Request compiler modes for specific language standard levels

– cxx_std_11, cxx_std_14, cxx_std_17
– Works with Clang, GCC, MSVC, Intel, Cray, PGI, XL

• These should be used instead of features like cxx_auto_type

Request that particles be built with -std=c++17

As this is a public compile feature anything that links to particles

will also build with -std=c++17

target_compile_features(particles PUBLIC cxx_std_17)

50

Step 0.5 - CMake and Compiler Selection
Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

• CMake caches the compiler for a build directory on the first invocation.
• CMake compiler detection has the following preference

– env variables (CC, CXX)
– cc and cxx path entries
– gcc and g++ path entries

• Try the following on cooley / theta
– soft add +gcc-7.1.0 [cooley only]
– cmake -S Step0 -B Step0CXXBuildDir
– CXX=g++ cmake -S Step0 -B Step0GCCBuildDir

51

Step 0.5 - CMake and Compiler Selection

52

Step 1 - Configure a File and C++11 Controls
Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

• Follow the instructions in Step1
• Run cmake or cmake-gui to configure the project and then build it with your

chosen build tool

• cd to the directory where Tutorial was built (likely the make directory or a
Debug or Release build configuration subdirectory) and run these commands:

– Tutorial 4294967296

– Tutorial 10

– Tutorial

53

Flow control (if)
CMake if command
supports a wide
range of expressions

if(my_var)

 set(result ${my_var})

endif()

if(NOT my_var)

if(my_var AND my_var2)

if(my_var OR my_var2)

if(my_var MATCHES regexp)

if(TARGET target)

if(EXISTS file)

if(my_var LESS my_var2)

if(my_ver VERSION_EQUAL "2.0.2")

54

Flow control (if): FALSE values

• The following values are all equivalent to “FALSE” in
a CMake if command:
– “” (the empty string)
– OFF
– 0
– NO
– FALSE
– N
– “NOTFOUND” exactly or ends in “-NOTFOUND”
– IGNORE

55

Flow control: loops
foreach(F IN ITEMS a b c)

 message(${F})

endforeach()

set(items a b c)

foreach(F IN LISTS items)

 message(${F})

endforeach()

while(MY_VAR)

 message(${MY_VAR})

 set(MY_VAR FALSE)

endwhile()

56

add_subdirectory and variable scope

• The add_subdirectory command allows a project
to be separated into directories

• Variable values are inherited by CMakeLists.txt
files in sub directories
– TopDir

set(MY_VAR 1)
add_subdirectory(Dir1)

– TopDir/Dir1
Dir1/CMakeLists.txt -> MY_VAR is 1

57

Function
function(showcase_args myarg)

 message("myarg: ${myarg}")

 message("ARGV0: ${ARGV0}")

 message("contents of myarg: ${${myarg}}")

 message("extra arguments: ${ARGN}")

 message("# of arguments: ${ARGC}")

endfunction()

set(items a b c)

showcase_args(items)

myarg: items
ARGV0: items
contents of myarg: a;b;c
extra arguments:
of arguments: 1

• ARGC – number of arguments passed
• ARGV0, ARGV1, … - actual parameters passed in
• ARGV – list of all arguments
• ARGN – list of all arguments beyond the last formal parameter

58

Function
• Dynamically scoped, so any variables set are local to the

function
• Use set(...PARENT_SCOPE) to set a variable in the calling

scope
function(showcase_args myarg)

 set("${myarg}" ${${myarg}} d e f PARENT_SCOPE)

endfunction()

set(items a b c)

showcase_args(items)

message("items: ${items}")

items: a;b;c;d;e;f

59

Macro
• Not dynamically scoped, so all variables leak into

the calling scope

macro(showcase_args arg1)

 set("${arg1}" ${${arg1}} d e f)

endmacro()

set(items a b c)

showcase_args(items)

message("items: ${items}")

items: a;b;c;d;e;f

60

CMake Common Command Review
cmake_minimum_required(VERSION 3.9)

project(Example LANGUAGES C CXX)

set(CMAKE_CXX_STANDARD 11)

set(CMAKE_CXX_STANDARD_REQUIRED TRUE)

set(srcs

 Field.cxx

 CellSet.cxx

 CellSetExplicit.cxx

 ImplicitFunctions.cxx)

add_library(simplelib ${srcs})

add_executable(example main.cxx)

target_link_libraries(example

 PRIVATE simplelib)

add_subdirectory(tests)

61

CMake Commands

• All commands
– cmake --help-command-list

– cmake --help-command command_name

– https://cmake.org/cmake/help/latest/manual/cm
ake-commands.7.html

62

https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html
https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html

CMakeCache.txt
• Stores optional choices and provides a project global variable repository
• Variables are kept from run to run
• Located in the top directory of the build tree
• A set of entries like this:

– KEY:TYPE=VALUE

• Valid types:
– BOOL
– STRING
– PATH
– FILEPATH
– INTERNAL

(these are only used by cmake-gui and ccmake to display the appropriate type
of edit widget)

63

CMake Cache

//Sphinx Documentation Builder

(sphinx-doc.org)

SPHINX_EXECUTABLE:FILEPATH=C:/Python27/Scripts

/sphinx-build.exe

...

//Build html help with Sphinx

SPHINX_HTML:BOOL=ON

64

Variables and the Cache

• Use option command or set command
with CACHE keyword

option(MY_VAR "only bool var" TRUE)

set(MY_VAR TRUE CACHE BOOL "bool var")

65

Variables and the Cache

Dereferences look first for a local variable, then
in the cache if there is no local definition for a
variable

Local variables hide cache variables

66

Variables and the Cache
Which one is the better option?

set(CMAKE_CXX_FLAGS "-Wall")

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall")

set(CMAKE_CXX_FLAGS "..." CACHE STRING "" FORCE)

67

Variables and the Cache

set(CMAKE_CXX_FLAGS "-Wall")
Clears any users CXX FLAGS! :(

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall")

set(CMAKE_CXX_FLAGS "..." CACHE STRING "" FORCE)
Will keep appending each time you reconfigure
the project

68

mark_as_advanced

• Advanced variables are not displayed in the
cache editors by default

• Allows for complicated, seldom changed
options to be hidden from users

• Cache variables of the INTERNAL type are
never shown in cache editors

69

CMake Special Variables
• cmake --help-variables or online docs
• User settable variables

– BUILD_SHARED_LIBS
– CMAKE_INSTALL_PREFIX
– CMAKE_CXX_FLAGS / CMAKE_<LANG>_FLAGS

• CMake pre-defined variables (should not be set by user code)
– WIN32, UNIX, APPLE, CMAKE_VERSION
– CMAKE_SOURCE_DIR, CMAKE_BINARY_DIR
– PROJECT_NAME
– PROJECT_SOURCE_DIR, PROJECT_BINARY_DIR

70

Passing options to the compiler

• alternative to configuring header files

• targets, directories, and source files have the properties:
COMPILE_OPTIONS, COMPILE_DEFINITIONS
Which can be also be used instead of the target commands.

add_compile_definitions(-Drevision=2902)

target_compile_definitions(Tutorial PRIVATE revision=2902)

target_compile_options(Tutorial PRIVATE -march=native)

71

Build Configurations

• With Makefile generators(Makefile, Ninja):

– CMAKE_BUILD_TYPE:STRING=Release

– known values are: Debug, Release, MinSizeRel,
RelWithDebInfo

• To build multiple configurations with a Makefile
generator, use multiple build trees

72

Build Configurations

• With multi-config generators (Visual Studio / Xcode):
– CMAKE_CONFIGURATION_TYPES

• = list of valid values for config types

– All binaries go into config subdirectory

${CMAKE_CURRENT_BINARY_DIR}/bin/Debug/
${CMAKE_CURRENT_BINARY_DIR}/bin/Release/

73

Build Configurations

• To set per configuration information:
– per target use $<CONFIG>

target_compile_definitions(Tutorial PRIVATE

 $<$<CONFIG:DEBUG>:ENABLE_DEBUG_CHECKS>

)

– globally use CMAKE_CXX_FLAGS_<CONFIG>

74

Build Configurations

• To get the current configuration type from
multi-conf:
– Generate Time:

• $<CONFIG>

– Build-time (deprecated):
• ${CMAKE_CFG_INTDIR}

– In source file
• CMAKE_INTDIR which is defined automatically

75

ADDING LIBRARIES

76

CMake Libraries

• Use the add_library command to build libraries.

option(BUILD_SHARED_LIBS

 "controls add_library default type" ON)

add_library(root root.cxx)

add_library(trunk STATIC trunk.cxx)

add_library(leaf SHARED leaf.cxx)

• STATIC => .a or .lib archive
• SHARED => .so, .dylib, or .dll dynamic library

77

CMake Libraries

• SHARED will work on Unix where supported.

• SHARED on Windows requires code changes or *.def
files to export symbols. CMake makes this easier.

option(BUILD_SHARED_LIBS

 "controls add_library default type" ON)

add_library(root root.cxx)

add_library(trunk STATIC trunk.cxx)

add_library(leaf SHARED leaf.cxx)

78

Linking to Libraries

• target_link_libraries is how you
specify what libraries a target requires.

add_library(root SHARED root.cxx)

add_library(trunk SHARED trunk.cxx)

add_library(leaf SHARED leaf.cxx)

target_link_libraries(trunk root)

target_link_libraries(leaf trunk)

79

Linking to Libraries

• By default target_link_libraries is
transitive

[100%] Linking CXX shared library libleaf.so

/usr/bin/c++ -fPIC -shared -Wl,-soname,libleaf.so

 -o libleaf.so leaf.cxx.o libtrunk.so libroot.so

[100%] Built target leaf

80

MODULE Libraries

• Very similar to SHARED libraries but are not
linked into other targets but can be loaded
dynamically at runtime using dlopen-like
functionality

add_library(parasite MODULE eat_leaf.cxx)

81

OBJECT Libraries

• Generate the object files but does not
construct an archive or library
– Can be installed [3.9]
– Can be exported/imported [3.9]
– Can be consumed with target_link_libraries [3.12]
– Can have transitive information [3.12]

82

OBJECT Libraries
add_library(root OBJECT root.cxx)

add_library(trunk OBJECT trunk.cxx)

add_library(leaf SHARED leaf.cxx)

target_link_libraries(leaf root trunk)

[100%] Linking CXX shared library libleaf.so

/usr/bin/c++ -fPIC -shared -Wl,-soname,libleaf.so

 -o libleaf.so leaf.cxx.o root.cxx.o trunk.cxx.o

83

OBJECT Libraries
add_library(root OBJECT root.cxx)

add_library(trunk OBJECT trunk.cxx)

add_library(leaf SHARED

 leaf.cxx

 $<TARGET_OBJECTS:root>

 $<TARGET_OBJECTS:trunk>)
[100%] Linking CXX shared library libleaf.so

/usr/bin/c++ -fPIC -shared -Wl,-soname,libleaf.so

 -o libleaf.so leaf.cxx.o root.cxx.o trunk.cxx.o

84

OBJECT Libraries Caveats

• CMake 3.9 added ability for OBJECT libraries
to be:
– Installed / Exported / Imported

– $<TARGET_OBJECTS> to be used in more
generator expression locations

85

OBJECT Libraries Caveats

• CMake 3.12 added ability to link to OBJECT
libraries:
– Will behave like any other library for propagation

– Anything that links to an OBJECT library will have
the objects embedded into it.

86

Step 2- Adding a library
Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

• Follow the directions in Step2
• Run cmake or cmake-gui to configure the project and then

build it with your chosen build tool
• Run the built Tutorial executable
• Which function gives better results,

– Step1’s sqrt or Step2’s mysqrt?

87

USAGE REQUIREMENTS
Modern CMake

88

Before Usage Requirements
• Before Usage Requirements existed

we used directory scoped commands
such as:

– include_directories

– compile_definitions

– compile_options

• Consumers have to know:

– Does the dependency generate
build tree files

– Does the dependency use any
new external package

Directory

Directory

Executable Library B

Directory

Library A

89

Modern CMake / Usage Requirements

• Modern CMake goal is to have each target
fully describe how to properly use it

• No difference between using internal and
external generated targets

90

Modern CMake
Root

Directory

Executable Library B

Directory

Library A

Root

Executable Library A Library B

Executable
Library B Library A

Library A
91

Usage Requirements

• target_link_libraries is the foundation for
usage requirements

• This foundation is formed by
– PUBLIC
– PRIVATE
– INTERFACE

target_link_libraries(trunk PRIVATE root)

target_link_libraries(leaf PUBLIC trunk)

92

Usage Requirements

target_link_libraries(trunk PRIVATE root)

target_link_libraries(leaf PUBLIC trunk)

/usr/bin/c++ -fPIC -shared -Wl,-soname,libleaf.so
 -o libleaf.so leaf.cxx.o libtrunk.so libroot.so

target_link_libraries(trunk root)

target_link_libraries(leaf trunk)

/usr/bin/c++ -fPIC -shared -Wl,-soname,libleaf.so
 -o libleaf.so leaf.cxx.o libtrunk.so

93

TLL (target link libraries)

• TLL can propagate dependencies when using:
– target_include_directories

– target_compile_definitions

– target_compile_options

– target_sources

– target_link_options

94

target_include_directories

• Propagates include directories

• Anything that links to leaf will automatically
have the zlib_dir on the include line

target_include_directories(leaf INTERFACE ${zlib_dir})

95

target_compile_options

• Propagates compiler options

• Only trunk will be built optimized for the
current hardware. Anything that links to trunk
will not get this flag

target_compile_options(trunk PRIVATE -march=native)

96

target_compile_definitions

• Propagates pre-processor definitions

• Root will have ROOT_VERSION defined and
anything that links to it will also

target_compile_definitions(root PUBLIC "ROOT_VERSION=42")

97

INTERFACE Libraries

• An INTERFACE library target does not directly
create build output, though it may have
properties set on it and it may be installed,
exported, and imported.

add_library(root INTERFACE)

target_compile_features(root INTERFACE cxx_std_11)

98

Step 3 - Usage Requirements for Library
Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

• Follow the directions in Step3 of the Tutorial
• Run cmake or cmake-gui to configure the project

and then build it with your chosen build tool

99

INSTALL RULES

100

Install Rules

• Specify rules to run at install time

• Can install targets, files, or directories

• Provides default install locations

add_library(leaf SHARED leaf.cxx)

install(TARGETS root trunk leaf parasite)

101

Install Targets

add_library(leaf SHARED leaf.cxx)

install(TARGETS root trunk leaf parasite

 ARCHIVE DESTINATION lib

 LIBRARY DESTINATION lib

 RUNTIME DESTINATION bin)

add_library(leaf SHARED leaf.cxx)

install(TARGETS root trunk leaf parasite)

102

Install Targets
add_library(leaf SHARED leaf.cxx)

install(TARGETS root trunk leaf parasite)

Target Type GNUInstallDirs Variable Built-in Default

RUNTIME ${CMAKE_INSTALL_BINDIR} bin

LIBRARY ${CMAKE_INSTALL_LIBDIR} lib

ARCHIVE ${CMAKE_INSTALL_LIBDIR} lib

PRIVATE_HEADER ${CMAKE_INSTALL_INCLUDEDIR} include

PUBLIC_HEADER ${CMAKE_INSTALL_INCLUDEDIR} include

103

Install Files

install(FILES

 trunk.h

 leaf.h

 DESTINATION

${CMAKE_INSTALL_INCLUDEDIR}/tree

)

104

Install Files

add_library(leaf SHARED leaf.cxx)

set_target_properties(leaf PROPERTIES

 PUBLIC_HEADER leaf.h)

install(TARGETS root trunk leaf parasite

PUBLIC_HEADER DESTINATION

${CMAKE_INSTALL_INCLUDEDIR}/tree

)

105

Exporting Targets

• Install rules can generate imported targets
add_library(parasite STATIC eat_leaf.cxx)

install(TARGETS parasite root trunk leaf

 EXPORT tree-targets)

install(EXPORT tree-targets

 DESTINATION lib/cmake/tree)

• Installs library and target import rules
– <prefix>/lib/libparasite.a
– <prefix>/lib/cmake/tree/tree-targets.cmake

106

CTEST

107

Testing with CMake
• Testing needs to be enabled by calling include(CTest) or
enable_testing()

add_test(NAME testname
 COMMAND exename arg1 arg2 ...)

– Executable should return 0 for a test that passes

• ctest – an executable that is distributed with cmake that
can run tests in a project

108

Running CTest

• Run ctest at the top of a binary directory to run all tests

$ ctest
Test project /tmp/example/bin
 Start 1: case1
1/1 Test #1: case1 Passed 0.00 sec
 Start 2: case2
2/2 Test #2: case2 Passed 0.00 sec

100% tests passed, 0 tests failed out of 2

Total Test time (real) = 0.01 sec

109

Running CTest

• -j option allows you to run tests in parallel

• -R option allows you to choose a test

• -VV for more verbose output

• --rerun-failed to repeat failed tests

• ctest --help for more information

110

Test fixtures

• Attach setup and cleanup tasks to a set of
tests.

• Setup tests → “main” tests → cleanup tests
• If any setup tests fail the “main” tests will not

be run.
• The cleanup tests are always executed, even

if some of the setup tests failed.

111

Test Fixtures example

add_test(NAME myDBTest COMMAND testDb)

add_test(NAME createDB COMMAND initDB)

add_test(NAME setupUsers COMMAND userCreation)

add_test(NAME cleanupDB COMMAND deleteDB)

add_test(NAME testsDone COMMAND emailResults)

112

Test Fixtures example
set_tests_properties(setupUsers PROPERTIES

DEPENDS createDB)

set_tests_properties(createDB PROPERTIES

FIXTURES_SETUP DB)

set_tests_properties(setupUsers PROPERTIES

FIXTURES_SETUP DB)

set_tests_properties(cleanupDB PROPERTIES

FIXTURES_CLEANUP DB)

set_tests_properties(myDBTest PROPERTIES

FIXTURES_REQUIRED DB)
113

GoogleTest integration

• gtest_discover_tests: added in CMake 3.10.
– CMake asks the test executable to list its tests.

Finds new tests without rerunning CMake.

include(GoogleTest)

add_executable(tests tests.cpp)

target_link_libraries(tests GTest::GTest)

gtest_discover_tests(tests)

114

https://blog.kitware.com/dynamic-google-test-discovery-in-cmake-3-10/

GoogleTest integration

• gtest_add_tests: use for CMake ≤ 3.9.
– Scans source files to finds tests. New tests are

only discovered when CMake re-runs.

include(GoogleTest)

add_executable(tests tests.cpp)

target_link_libraries(tests GTest::GTest)

gtest_add_tests(TARGET tests)

115

https://blog.kitware.com/dynamic-google-test-discovery-in-cmake-3-10/

CTest and multi core tests

• When launching tests that use multi cores it
is important to make sure you use the
following:

set_tests_properties(myTest PROPERTIES

 PROCESSORS 4)

116

CTest and multi core tests

• PROCESSOR_AFFINITY - when supported ties
processes to specific processors

set_tests_properties(myTest PROPERTIES

 PROCESSOR_AFFINITY ON

 PROCESSORS 4)

117

Test Resource Allocation

• Tests specify the resources they need
• Users specify the resources available on the

machine
• CTest keeps track of available resources when

running tests in parallel
• New in CMake v3.16

118

https://cmake.org/cmake/help/latest/manual/ctest.1.html#resource-specification-file

Test Resource Allocation

• Tests using GPU
– Run tests serially → too slow
– Run tests in parallel → exhaust available

memory → spurious failures

• Tests dictate how much GPU memory they
use

• CTest can run tests in parallel without
exhausting GPU memory

119

Test Resource Allocation

• CTest does not directly communicate with
GPUs

• It keeps track of abstract resource types and
the number of “slots” available

120

Test Resource Allocation

• For tests, set RESOURCE_GROUPS property

• For machines, define a Resource Specification
JSON file.

121

set_property(TEST MyTest PROPERTY

RESOURCE_GROUPS "gpus:2" "crypto_chips:1")

ctest_test(RESOURCE_SPEC_FILE spec.json)

https://cmake.org/cmake/help/latest/manual/ctest.1.html#resource-specification-file
https://cmake.org/cmake/help/latest/manual/ctest.1.html#resource-specification-file

Step 4 - Installing and Testing

• Follow the directions in Step4 of the CMake Tutorial

– Expect the `make install` to fail when on ANL hardware

• Run cmake or cmake-gui to configure the project and then build it with
your chosen build tool

• Build the “install” target (make install, or right click install and choose
“Build Project”) – verify that the installed Tutorial runs

• cd to the binary directory and run

“ctest -N” and “ctest -VV”

122

SYSTEM INTROSPECTION

123

Using Find Modules

• One of CMake strengths is the
find_package infrastructure

• CMake provides 150 find modules
– cmake --help-module-list

– https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

find_package(PythonInterp)

find_package(TBB REQUIRED)

124

https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

Using Find Modules

• CMake supports each project having custom find modules via
CMAKE_MODULE_PATH
– It is searched before using a module provided by CMake

set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/CMake)

125

Using Find Modules

• Modern approach: packages construct import
targets which combine necessary information into
a target.

• Classic CMake: when a package has been found it
will define the following:
– <NAME>_FOUND

– <NAME>_INCLUDE_DIRS

– <NAME>_LIBRARIES

126

Using Config Modules

• find_package also supports config modules

• Config modules are generated by the CMake
export command

• Automatically generate import targets with all
information, removing the need for
consuming projects to write a find module

127

Using Find Modules

target_link_libraries(trunk ${PNG_LIBRARIES})

include_directories(trunk ${PNG_INCLUDE_DIRS})

target_link_libraries(trunk PRIVATE PNG::PNG)

Preferred Modern CMake approach:

Historical approach:

find_package(PNG REQUIRED)

add_library(trunk SHARED trunk.cxx)

Our library “trunk” needs PNG

128

Writing find modules

• Exporting your targets is preferred when
possible.

• Only write a find module for a project you
cannot change.

• Full example here:
https://cmake.org/cmake/help/latest/manual/cmake-de
veloper.7.html#a-sample-find-module

129

https://cmake.org/cmake/help/latest/manual/cmake-developer.7.html#a-sample-find-module
https://cmake.org/cmake/help/latest/manual/cmake-developer.7.html#a-sample-find-module

Writing find modules

Find required files

find_path(MyLib_INCLUDE_DIR NAMES mylib.h)

find_library(MyLib_LIBRARY NAMES mylib)

Set version (if available)

set(MyLib_VERSION ${MyLib_VERSION})

130

Writing find modules

include(FindPackageHandleStandardArgs)

find_package_handle_standard_args(MyLib

 FOUND_VAR MyLib_FOUND

 REQUIRED_VARS

 MyLib_LIBRARY

 MyLib_INCLUDE_DIR

 VERSION_VAR MyLib_VERSION)

131

FindPackageHandleStandardArgs

• Makes sure REQUIRED_VARS are set
• Sets MyLib_FOUND
• Checks version if MyLib_VERSION is set and

and a version was passed to find_package()
• Prints status messages indicating if the

package was found.

132

Writing find modules

if(MyLib_FOUND)

 set(MyLib_LIBRARIES ${MyLib_LIBRARY})

 set(MyLib_INCLUDE_DIRS ${MyLib_INCLUDE_DIR})

endif()

Provide a way to use the found results:

variables (classic approach)

133

Writing find modules

 if(MyLib_FOUND AND NOT TARGET MyLib::MyLib)

 add_library(MyLib::MyLib UNKNOWN IMPORTED)

 set_target_properties(MyLib::MyLib PROPERTIES

 IMPORTED_LOCATION "${MyLib_LIBRARY}"

 INTERFACE_INCLUDE_DIRECTORIES "${MyLib_INCLUDE_DIR}"

)

 endif()

Provide a way to use the found results:

imported targets (new approach)

134

• CMake’s find_package uses the following
pattern:
– <PackageName>_ROOT from cmake, then env [3.12]

– CMAKE_PREFIX_PATH from cmake

– <PackageName>_DIR from env

– CMAKE_PREFIX_PATH from env

– Any path listed in

Understanding Find Modules
Searches

find_package(PNG HINTS /opt/png/)

135

– PATH from env

– paths found in the CMake User Package Registry

– System paths as defined in the toolchain/platform

• CMAKE_SYSTEM_PREFIX_PATH

– Any path listed in

Understanding Find Modules
Searches

find_package(PNG PATHS /opt/png/)

136

Find Module Variables

• In general all the search steps can be
selectively disabled. For example to disable
environment paths:

CMake 3.15+

find_package(<package> NO_SYSTEM_ENVIRONMENT_PATH)

137

set(CMAKE_FIND_USE_SYSTEM_ENVIRONMENT_PATH FALSE)

find_package(<package>)

Directing Find Modules Searches

• The default search order is designed to be
most-specific to least-specific for common use
cases. When projects need to search an
explicit set of places first, they can use the
following pattern

138

find_package(<package> PATHS paths... NO_DEFAULT_PATH)

find_package(<package>)

Directing Find Modules Searches

• CMAKE_FIND_ROOT_PATH
– N directories to "re-root" the entire search under.

cmake -DCMAKE_FIND_ROOT_PATH=/home/user/pi .

Checking prefix [/home/user/pi/usr/local/]

Checking prefix [/home/user/pi/usr/]

Checking prefix [/home/user/pi/]

139

Direct Find Modules Searches

• CMAKE_PREFIX_PATH
– Prefix used by find_package as the second search

path

140

Direct Find Modules Searches

• <PackageName>_ROOT
– Prefix used by find_package to start searching for

the given package

– The package root variables are maintained as a
stack so if called from within a find module, root
paths from the parent’s find module will also be
searched after paths for the current package.

141

Debugging Find Modules [3.17+]

target_link_libraries(trunk ${PNG_LIBRARIES})

include_directories(trunk ${PNG_INCLUDE_DIRS})

Can use the undocumented variable:

Historical (Classic) approach:

find_package(XYZ REQUIRED)

cmake --find-debug .

…
find_package considered the following paths for XYZ.cmake

 /opt/cmake/.../Modules/FindXYZ.cmake

The file was not found.

find_package considered the following locations for the Config module:

 /home/robert/.local/XYZConfig.cmake

 /home/robert/.local/xyz-config.cmake

 …
 /opt/cmake/XYZConfig.cmake

 /opt/cmake/xyz-config.cmake

The file was not found.

142

target_link_libraries(trunk ${PNG_LIBRARIES})

include_directories(trunk ${PNG_INCLUDE_DIRS})

Can use the undocumented variable:

Historical (Classic) approach:

set(CMAKE_FIND_DEBUG_MODE 1)

find_library(PNG_LIBRARY_RELEASE

 NAMES png png_static)

find_library called with the following settings:

 VAR: PNG_LIBRARY_RELEASE

 NAMES: "png"

 "png_static"

 Documentation: Path to a library.

 ...

 find_library considered the following locations:

 /home/robert/.local/bin/(lib)png(\.so|\.a)

 /usr/local/cuda/bin/(lib)png(\.so|\.a)

 …
 The item was not found.

Debugging Find Calls [3.17+]

143

Include command

• Allows for including of helper CMake routines
that are located in different files

• Use the CMAKE_MODULE_PATH to search for
files

Setup default build types

include(VTKmBuildType)

144

Example include file
Set a default build type if none was specified

set(default_build_type "Release")

if(EXISTS "${CMAKE_SOURCE_DIR}/.git")

 set(default_build_type "Debug")

endif()

if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)

 message(STATUS

 "Setting build type to '${default_build_type}' as none was specified.")

 set(CMAKE_BUILD_TYPE "${default_build_type}" CACHE

 STRING "Choose the type of build." FORCE)

 # Set the possible values for build type for cmake-gui

 set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS

 "Debug" "Release" "MinSizeRel" "RelWithDebInfo")

endif()

145

System Introspection
• find_* commands

– find_file
– find_library
– find_package
– find_path
– find_program

146

System Introspection
• try_compile
• Macros to help with common tests

– CheckIncludeFileCXX.cmake
– CheckCSourceCompiles.cmake
– CheckIncludeFiles.cmake
– CheckCSourceRuns.cmake
– CheckLibraryExists.cmake
– CheckCXXCompilerFlag.cmake
– CheckCXXSourceCompiles.cmake
– CheckSizeOf.cmake

• try_run, but only if not cross-compiling

147

System Introspection (cont.)

– CheckCXXSourceRuns.cmake

– CheckStructHasMember.cmake

– CheckSymbolExists.cmake

– CheckTypeSize.cmake

– CheckFunctionExists.cmake

– CheckIncludeFile.cmake

– CheckVariableExists.cmake

148

Step 5 - System Introspection
Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

• Follow the directions in Step5 of the CMake Tutorial
• Run cmake or cmake-gui to configure the project and

then build it with your chosen build tool
• Run the built Tutorial executable
• Which function gives better results now, Step1’s sqrt or

Step5’s mysqrt?

149

OUTPUT CONTROLS

150

Build Name Controls

• You can control the build output name of targets
– Controlled at the target level
– Can be customized on a per config basis

151

set(CMAKE_DEBUG_POSTFIX "d")

add_library(root OBJECT root.cxx)

add_library(trunk STATIC trunk.cxx)

add_library(leaf SHARED leaf.cxx)

add_library(root OBJECT root.cxx)

add_library(trunk STATIC trunk.cxx)

add_library(leaf SHARED leaf.cxx)

set_target_properties(leaf trunk root

PROPERTIES DEBUG_POSTFIX "d")

Suffix Debug Libraries

152

Static and Shared libraries

add_library(leaf_shared SHARED leaf.cxx)

add_library(leaf_static STATIC leaf.cxx)

set_target_properties(leaf_shared

PROPERTIES OUTPUT_NAME "leaf")

set_target_properties(leaf_static

PROPERTIES OUTPUT_NAME "leaf")

153

library versions on UNIX

This results in the following library and symbolic links:
libleaf.so.1.12
libleaf.so.8 -> libleaf.so.1.12
libleaf.so -> libleaf.so.8

Build Versioning Libraries

add_library(leaf SHARED leaf.cxx)

set_target_properties(leaf PROPERTIES VERSION "1.12"

 SOVERSION "8")

154

Build Location Controls

• You can control the build output location of:
– Executables
– Libraries
– Archives
– PDB Files

• Can be controlled globally, or at the target level
• Can be customized on a per config basis

155

Build Output Controls

• Executables = CMAKE_RUNTIME_OUTPUT_DIRECTORY
• Shared Libraries = CMAKE_LIBRARY_OUTPUT_DIRECTORY
• Static Libraries = CMAKE_ARCHIVE_OUTPUT_DIRECTORY
• PDB Files = CMAKE_PDB_OUTPUT_DIRECTORY
• DLL’s import .lib = CMAKE_ARCHIVE_OUTPUT_DIRECTORY
• At the Target Level (properties)

– RUNTIME_OUTPUT_DIRECTORY
– RUNTIME_OUTPUT_DIRECTORY_<Config>

156

CUSTOM COMMANDS

157

Custom commands

• add_custom_command
– Allows you to run arbitrary commands before,

during, or after a target is built

• Can be used to generate new files

• Can be used to move or fixup generated or
compiled files

158

Custom commands

• All outputs of the add_custom_command
need to be explicitly listed.

• add_custom_command output must be
consumed by a target in the same scope
– add_custom_target can be used for this

159

Custom command example
add_library(CudaPTX OBJECT kernelA.cu kernelB.cu)

set_target_properties(CudaPTX PROPERTIES CUDA_PTX_COMPILATION ON)

set(output_file ${CMAKE_CURRENT_BINARY_DIR}/embedded_objs.h)

add_custom_command(

 OUTPUT "${output_file}"

 COMMAND ${CMAKE_COMMAND}

 "-DBIN_TO_C_COMMAND=${bin_to_c}"

 "-DOBJECTS=$<TARGET_OBJECTS:CudaPTX>"

 "-DOUTPUT=${output_file}"

 -P ${CMAKE_CURRENT_SOURCE_DIR}/bin2c_wrapper.cmake

 VERBATIM

 DEPENDS $<TARGET_OBJECTS:CudaPTX>

 COMMENT "Converting Object files to a C header"

)

add_executable(CudaOnlyExportPTX main.cu ${output_file})

add_dependencies(CudaOnlyExportPTX CudaPTX)

160

CMake Scripts

• cmake –E command
– Cross platform command line utility for:
– Copy file, Remove file, Compare and conditionally copy,

time, create symlinks, others
• cmake –P script.cmake

– Cross platform scripting utility
– Does not generate CMakeCache.txt
– Ignores commands specific to generating build

environment

161

Step 6 - Custom Command and Generated File

Cooley:
soft add +cmake-3.17.3

Theta:
module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

• Follow the directions in Step6 of the CMake
Tutorial

• Run cmake or cmake-gui to configure the project
and then build it with your chosen build tool

• Run the built Tutorial executable
162

